Syllabus Reference

Course title	Integrated Evolutionary Biology		
Term	後期 2nd Half		
Credit(s)	2		
The main day		The main period	
School/Program	School of Advanced Sciences		
Department/Program	Department of Evolutionary Studies of Biosystems		
Category	Basic Education		
Lecturers	Yoko Satta, Tatsuya Ota, and others		

Instructor				
Full name				
* SATTA YOKO				
OTA TATSUYA				
TANABE HIDEYUKI				

Outline	Biosystems on the earth can be classified into systems with different levels of complexity, from a cell to society. This course is to discuss evolution of such systems from viewpoints of "elements (members) in each system", "interaction between elements" and "theory to describe this interaction".		
Goal	To get basic knowledege of biology, from the viewpoint of Evolution.		
Grading system			
	02:Two-grade evaluation (P: Pass, F: Fail)		
Grading policy	The grading of this course is either P(Pass) or F(Failure).		
Lecture Plan	Schedule: November 4, 10, 17, December 16, 2021, January 31, 2022 Contents: 1. Tree of life - basic knowledge of molecular evolution (Yoko Satta) 2. Human evolution - genetics, adaptation, environment(Jun Gojobori) 3. Prediction for future -mathematical and theoretical biology(Hisashi Ohtsuki) 4. Animal behaviour - mechanism and evolution(Nobuyuki Kutsukake) 5. Genomes, chromosomes, and cells(Yoko Satta, Tatsuya Ota, Hideyuki Tanabe)		
Location	Науата		
Language	English		
Textbooks and references	Not specified		
Others	None		